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Abstract 

Freshwater fishes are an important part of many countries' economies as it is a huge part of the 

aquaculture industry. But due to its detrimental effects on growth performance, sexual 

behaviour and health, precocious puberty or delayed puberty are some of the reasons the 

aquaculture business is having issues. Puberty is controlled by various environmental 

(exogenous) and internal regulatory mechanisms (endogenous). However, the exact 

mechanism is not yet known. Internal components like the hormones of the central reproductive 

axis (Gonadotropin-releasing hormone, Follicle stimulating hormone, Luteinizing hormone, 

Estrogen and Testosterone), peptides like Neurokinin B and Kisspeptin, Leptin, photoperiod 

hormone Melatonin, neuroendocrine transmitters (Serotonin, Dopamine, Gamma-

aminobutyric acid), are to name a few which are involved in the onset of puberty. Knowing the 

mechanism would help to control the pubertal onset in fish which would ultimately help in the 

growth of the aquaculture industry. Recently three molecules – Kisspeptin, Melatonin and 

Serotonin, have come to light which are involved during the pubertal onset. It is observed that 

Kisspeptin acts as a gatekeeper of the GnRH hormone, Melatonin levels decrease during the 

pubertal onset time and Serotonin has a role in GnRH secretion and gonadal maturation. The 

present review focuses on the advancements made in this field by elucidating the central players 
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(Kisspeptin, Melatonin and Serotonin) working in the diencephalon region of the brain of 

teleost. 
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Introduction 

Freshwater fishes (e.g., Tilapia, Rohu, Catla, Carp, Mrigal, etc.) form an important 

element in the economy of many nations as they have long been a staple item in the diet of 

many people. That is why the aquaculture sector is growing expeditiously in animal food 

production and is considered to be a sustainable solution to world food security. The freshwater 

aquaculture industry accounts for more than 95% of the total aquaculture production1. 

For the aquaculture industry to grow, it is vital that the fish breeds and reproduces 

properly. The breeding period of fishes is varied in India and reproduction is a periodic 

phenomenon that is controlled by environmental (exogenous) as well as internal (endogenous) 

regulatory mechanisms. 

Environmental factors like photoperiod, water temperature, feed intake, nutrition, 

stress, endocrine disruptors, etc. influence the timing of puberty. Light and temperature cue the 

seasonal breeders to adjust their breeding time to the most appropriate season. For example, in 

the Atlantic salmon (Salmo salar), their spawning depends on light and water temperature. This 

again depends on the larval development and its first food intake which should optimally occur 

in spring. Lower water temperature is favourable as compared to high water temperature for 

successful spawning2. Fish species like Barbel (Barbus barbus), Tench (Tinca tinca) and Chub 

(Leuciscus Cephalus) show pubertal development during the summer which has long days 

(more photoperiod)3 while Atlantic cod (Gadus morhua) show pubertal development in short 

days (less photoperiod). Other factors like salinity, swimming frequency (migration), rain 

period and social communication also play a role in the pubertal onset but are far less studied. 

For example, Eels can reproduce only once a year after a long migration. It is still unclear how 
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reproduction is controlled in them, although prolonged swimming might play as a stimulus for 

the onset of puberty4.  

One of the significant endogenous factors that controls reproduction is the molecular 

mechanism (sex steroid feedback mechanism) in which comes the highly conserved central 

reproductive axis, called the Hypothalamic-Pituitary-Gonadal (HPG) axis. In this, the 

Gonadotropin-releasing hormone (GnRH) is released from the hypothalamus, stimulating the 

production and release of pituitary glycoprotein hormones, the gonadotropins - luteinizing 

hormone (LH) and follicle stimulating hormone (FSH). These gonadotropins then act on the 

gonads to activate gametogenesis and steroidogenesis by stimulating the release of sex steroids 

(androgens and estrogens). The GnRH neurons sit on the apex of this axis and control 

reproduction by integrating information from social and environmental signals with hormonal 

state5.  

Puberty is a biological transition that vertebrates go through, in which they have certain 

physiological changes in their body. During this time, they show the first signs of sexual 

maturity and become capable of reproduction. With the initiation of the HPG axis, puberty also 

starts in vertebrates (including fishes). In teleost, puberty starts sometime after gonadal sex 

differentiation6 which is characterized by the onset of spermatogenesis in males7 and 

vitellogenic ovarian development in females8. 

In fish farming, in order to control the onset of puberty, it is important to understand 

the mechanism that triggers puberty as well as the various factors that govern this process. The 

factors that control the gonadal development and gamete maturation are well-studied in various 

fish species, but till date data is scarce in regards to the mechanism of puberty in different fish 

species. Hence, this review focuses on a few factors which are involved during the pubertal 

onset in teleost and discusses the progress made till now.  

Kisspeptin             

As discussed earlier, GnRH neurons are the main hub for the regulation of the 

reproductive system, but their regulation is intricate. A diverse range of cell types and signaling 

molecules converge on the GnRH neuron network, either directly or indirectly. GnRH neuron 

regulators work through G Protein-coupled receptors (GPCRs). One of the most significant 
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GPCRs in the neuroendocrine control of reproductive function is the kisspeptin receptor and 

its ligand kisspeptin.  

Kisspeptin, encoded by gene kiss1, belongs to the Arginine (Arg)-Phenylalanine (Phe)-

NH2 (RF-amide) peptide family9. It was originally discovered in 1996 as a metastasis 

suppressor gene in human melanomas and was known as metastin10. Following the discovery 

of kisspeptin, an independent research done in 1999 discovered an orphan receptor GPR54 in 

rats, which belonged to the rhodopsin family and had a partial sequence resemblance (45%) to 

the galanin receptor family, but no binding affinity11. It was not until 2001 when GPR54 was 

deorphanized that it was characterized that kiss1 acts as the endogenous ligand and binds and 

activates GPR54. Therefore, it was then designated as kiss1r12, 13. 

In 2003, there was a breakthrough in the field of reproductive neuroendocrinology when 

two independent studies linked kisspeptin with the onset of puberty. It was observed that 

mutation in the kiss1r gene caused the impaired onset of puberty and hypogonadotropic 

hypogonadism in humans14, 15. Similar results were also observed in mice when kiss1 and kiss1r 

genes were mutated16. Since then, several studies have been conducted, both in mammalian 

vertebrates and non-mammalian vertebrates, to understand the physiological role and the 

mechanistic action of kisspeptin in the control of reproduction.  

In 2004, the first non-mammalian kiss1r gene was discovered in Tilapia (Oreochromis 

niloticus)17. Another paralogous kisspeptin encoding gene, kiss2, has also been identified in 

Zebrafish (Danio rerio) and Medaka (Oryzias latipes)18 which has amino acid differences at 

three positions compared to kiss1. Following this, the non-mammalian kiss1/kiss2 gene was 

then identified in different fish species like Zebrafish19, Medaka20, Sea bass (Dicentrarchus 

labrax)21, Goldfish (Carassius auratus)22, Senegalese sole (Solea senegalensis)23, chub 

mackerel (Scomber japonicas)24, Catla (Catla catla)25 and Rohu (Labeo rohita)26. Species-

specific differences arise, where some species have both the forms present (e.g., Zebrafish, 

Medaka, Goldfish, Sea bass, Chub mackerel, Rohu) and whereas some species have only one 

form (e.g., Tilapia, Senegalese sole). It is evident from all of these investigations that the amino 

acid sequences are highly conserved, and they also provide evidence that the kiss1/kiss1r 

system is a trait that all vertebrates have maintained throughout evolution except birds. Other 

than the brain, kisspeptin is also found to be expressing in other tissues like gonads and adipose 

tissue, nevertheless, their tissue-specific role is yet to be explored. 
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Anatomical distribution of kisspeptin neurons and its receptors 

Two populations of kiss1 neurons have been observed: [1] In Zebrafish, Medaka18, 

Goldfish27 and Sea bass28 kiss1 is found in the ventral habenula. [2] Another population has 

been observed only in medaka18, 20 is present in the nucleus posterioris periventricularis (NPPv) 

and the nucleus ventral tuberis (NVT).  

kiss2 has been observed only in a hypothalamic nucleus, the dorsal zone of the 

periventricular hypothalamus (also designated as the nucleus recessus lateralis, nRL) in the 

Tilapia29, Zebrafish, Medaka18, 30, Goldfish27 and Sea bass28. A second population has also been 

found in Goldfish and Zebrafish in the pre-optic region (POA)27, 31. 

In Chub mackerel both kiss1 and kiss2 are found in the anterior POA and hypothalamus (NLT 

and the nRL region)32. 

The receptors (kiss1r and kissr2) of the genes (kiss1 and kiss2) are found to be 

expressing at the same location where the genes are present. This suggests that there is an 

autocrine regulation of the genes. 

 

Species Habenula 
Preoptic 

region 

Hypothalamus 

nPT/NPPv Hd/nRL Hv/NVT/nLT 

Zebrafish kiss1 kiss2 kiss2 kiss2  

Medaka kiss1  kiss1 kiss2 kiss1 

Goldfish kiss1 kiss2  kiss2 kiss2 

Tilapia    kiss2  

Sea bass kiss1   kiss2  

Chub 

mackerel 
 kiss1, kiss2  kiss1, kiss2 kiss1, kiss2 

 

Table 1: Distribution of kisspeptin cells in the brain of teleost 
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nPT/NPPv: posterior tuberal nucleus/nucleus posterioris periventricularis; Hd/nRL: dorsal 

zone of periventricular hypothalamus/nucleus recessus lateralis; Hv/NVT/nLT: ventral zone of 

periventricular hypothalamus/nucleus ventral tuberis/nucleus lateralis tuberis. 

 

Figure 1: Distribution of kiss1 cells in the brain of teleost 

1-Habenula, 2-Preoptic region, 3-nPT/NPPv, 4-Hd/nRL and 5-Hv/NVT/nLT. Red-Zebrafish, 

blue-Medaka, yellow-Goldfish, green-Sea bass and purple-Chub mackerel. 

 

Figure 2: Distribution of kiss2 cells in the brain of teleost 

1-Habenula, 2-Preoptic region, 3-nPT/NPPv, 4-Hd/nRL and 5-Hv/NVT/nLT. Red-Zebrafish, 

blue-Medaka, yellow-Goldfish, pink-Tilapia, green-Sea bass and purple-Chub mackerel. 

Physiological action of kisspeptin 

In a study done in 2004 in the brain of Tilapia fish, it was observed that the expression 

of kiss1r increases during the time of pubertal onset, which subsequently decreases after 

exposure to continuous light17. These findings also suggested that light may have an impact on 

the transcriptional processes controlling the kiss1r expression. In 2008, gene expression studies 
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done in Zebrafish revealed that levels of kiss1r mRNA in the brain rise sharply at the start of 

puberty, indicating that the kiss1/kiss1r pathway contributes to the onset of puberty in fish like 

that of in mammals. The study also suggested that kisspeptin has a role in reproduction as it 

was also found to be expressing in the gonads19. Increased expression of kisspeptin was also 

observed in the brain and gonads of Olive flounder (Paralichthys olivaceus) during the onset 

of puberty33. In Catla fish, after injecting with nano-encapsulated kisspeptin, an increase in the 

expression pattern of reproductive genes (GnRH, LH and FSH) was observed, which ultimately 

led to the onset of puberty25. Similar results were observed in Nile Tilapia, where the kiss2 

expression was significantly higher at the immature stage than the mature stage, suggesting its 

involvement in the gonadal development. Also, administering kisspeptin externally resulted in 

elevated estradiol and testosterone levels in blood plasma and GnRH, and gonadotropin 

expression in the brain34. Recently in 2020, an intramuscular injection of kisspeptin was given 

to Senegalese sole and it resulted in the increase of gonadotropin synthesis and secretion, as 

well as the testosterone plasma titers35. 

Kisspeptin & GnRH 

A study done by Parhar in 2004 in Tilapia fish showed the co-expression of kisspeptin 

in GnRH neurons, which offers the first proof of a connection between kisspeptin and the 

GnRH system17. Following that, studies done in Grey mullet (Mugil cephalus)36, Cobia 

(Rachycentron canadum)37 and Fathead minnow (Pimephales promelas)38 have established 

that kiss1r expression in the fish brain is localised to GnRH neurons and is higher in fish at the 

beginning of puberty compared to pre or post-puberty, at a time when GnRH expression is also 

elevated. These results offer preliminary proof that kisspeptins directly target GnRH cells in 

fish and that they likely cause the release of GnRH during puberty by interacting with kiss1r, 

as is the case in mammals. Gnrh1 neurons are found to be expressing kiss2r in Burtoni fish 

(Astatotilapia burtoni)39 and Stripped bass (Morone saxatilis)40. A positive correlation of 

kisspeptin-GnRH was also reported in Zebrafish41, Chub mackerel42, Sea bass43 and Chinese 

sucker (Myxocyprinus asiaticus)44. To ascertain the precise physiological function of the 

GnRH-kisspeptin system in fish, however, a far more thorough understanding of the expression 

of kiss1r and gnrh concerning pubertal onset is an area of research. 

Kisspeptin on pituitary level  
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Although the hypothalamus is the main action centre for kisspeptin to control puberty 

by regulating GnRH secretion, in mammals evidence suggests that it can also affect the 

pituitary directly as its mRNA expression has been observed there. In-vivo experiments have 

been conducted on pre-pubertal Sea bass by administering kisspeptin and checking its effect 

on the GTH (pituitary hormones) secretion. Results reveal that LH and FSH secretion was 

induced by both kisspeptins, while kiss2 exhibits a more pronounced response to activation 

than kiss145. The opposite was observed in Goldfish where kiss1 induced the LH secretion in-

vivo but no significant expression in-vitro, whereas kiss2 had no effect on LH in both in-vivo 

and in-vitro22. In female Zebrafish it was found that after administration of both kiss1 and kiss2, 

it was found that kiss2 (and not kiss1) increases the FSH and LH expression in the pituitary18. 

There are also reports which show an inhibitory role on LH expression in the European eel 

(Anguilla anguilla) but not on FSH expression46. Another report found that after giving 

kisspeptin injections to the fishes, it accelerated their puberty by showing advancement in 

spermatozoa and oocyte development in males and females respectively47. But again, another 

report in Sea bass found that kiss1 had no effect on gonadotropin release but kiss2 induced the 

secretion43. From these reports, we can say that the role of kisspeptin on the pituitary level is 

conflicting and needs further studies.  

The presence of the kisspeptin system in the brain of fish provides a solid base to 

perform further studies to demonstrate the claimed central role in the control of puberty and 

thus reproductive function. 

Apart from kisspeptin, the other key player which accounts for puberty is the 

neuroendocrine transducer, melatonin. 

 

Melatonin 

Fishes are either irregular or seasonal breeders. For a brief period of time, they are 

engaged in their peak reproductive activity or breeding which is followed by an intricate 

preparation process. To ensure that the breeding takes place during the most advantageous time 

of the year, recurrent reproductive events frequently coincide with the seasonal changes in a 

group of environmental cues (as discussed earlier)48. The circadian clock is synchronized and 

modulated by environmental cues, and this in turn affects the rhythmic generation of 

messengers that act on target cells and tissues to regulate various bodily activities49. This 

biological/circadian rhythm is sensed and managed by the eye (retina) and the pineal gland. 
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The fish pineal organ is regarded as the most significant element of the neuroendocrine system 

due to its special ability to directly respond to changes in environmental light-dark 

circumstances. The primary role of the pineal gland is to take information about the 

environment's status of the light-dark cycle and transmit it so that the hormone melatonin can 

be produced and secreted50. 

Melatonin is a lipophilic molecule that is synthesized from tryptophan amino acid. A 

prerequisite for melatonin synthesis by five enzymatic reactions is the uptake of tryptophan 

from the circulation into the pineal gland, and arylalkylamine N-acetyltransferase (AANAT) is 

the penultimate rate-limiting enzyme in this biosynthetic pathway. When the AANAT gene is 

expressed in the pinealocytes of the pineal organ, the adrenergic system is used as a response 

mechanism to changes in environmental light-dark conditions. Melatonin is then synthesized 

and released into the bloodstream to carry out its final hormonal actions on the target cells, 

tissues, and organs51, 52. 

Melatonin is used to determine recurrent reproductive events in an annual cycle by 

measuring and predicting daily and seasonal time. Plasma melatonin titers stay high during the 

dark phase (night) and low during the daylight in fish, as they do in other vertebrates, where 

melatonin functions as a conservative chemical messenger of photoperiod or Zeitgeber53. 

Because of this characteristic, it is also termed as “signal of darkness” or the “time-keeping 

hormone”54. Throughout evolution, the mechanism of photoperiodic or circadian control of 

melatonin production in the pineal gland has undergone significant change, yet the melatonin 

signal released into the blood is the same in fish and mammals55. 

Researchers have focused on how melatonin regulates reproduction in a wide range of 

fish species as a powerful photo-neuroendocrine signal from the pineal organ. According to the 

theory developed from various fish research, melatonin interacts with the hypothalamus to 

affect the reproductive system. To integrate the photoperiodic information, the preoptic area 

(POA) of the hypothalamus in fish receives nervous inputs from the retina and the pineal organ, 

among them the hormonal (melatonin) input from the pineal organ plays a crucial role in the 

photo-neuroendocrine control of fish reproduction55.  

Melatonin receptors 
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In fishes, three forms of melatonin receptors are found: MT1 (mtnr1a), MT2 (mtnr1b) 

and MT3 (mtnr1c). They are found to be present in the retina and different parts of the brain 

(POA telencephalon, diencephalon and in the pituitary)56. However, the exact role of these 

receptors during pubertal onset in fish remains elusive. A study done in Nile tilapia found the 

MT1 receptor to be most associated during the onset of puberty57. 

Melatonin, kisspeptin and GnRH 

It is known that European sea bass exhibits day-night fluctuations and that melatonin 

inhibits the expression of GnRH and its receptors in the brain58. There is co-expression of kiss1 

and kiss2 neurons and the melatonin receptors found in the lateral tuberal nucleus and the 

parvocellular preoptic nucleus region of the brain in Sea bass28, 59. The findings of the Zebrafish 

study, which demonstrate the receptor-mediated action of melatonin at the brain level, suggest 

that melatonin may promote the release of hypothalamic GnRH by likely involving the kiss1r 

system in the GnRH neurons60. Although it has been shown that melatonin plays a significant 

part in the transduction process of photoperiodic signals in the regulation of seasonal 

reproduction, kisspeptin cells do not appear to express the melatonin receptor, therefore it is 

still unclear how seasonality alters kisspeptin activity61. It was found that in Orange-spotted 

grouper (Epinephelus coioides), the down-regulation of melatonin receptor (which is more 

expressed at night and less expressed in the day) resulted in up-regulation of kiss2 and GnRH 

(which is more expressed in the day and less expressed in the night)62. The results of a recent 

study on Goldfish, however, suggested that melatonin's light-mediated effects to regulate 

sexual development in fish may be the result of interactions between melatonin, GnIH, and 

Kiss63. In European sea bass, a study was conducted to look into whether essential genes that 

activate the HPG axis can be activated by the light stimulus integrated by clock proteins. It was 

found that the clock genes (clock, npas2 and bmal1) and the genes kiss, kissr and gnrh shared 

conserved transcription factor frameworks in their promoters. This indicated that there might 

be a correlation between them64. Furthermore, in the hypothalamus region (diencephalon) of 

the Cinnamon clownfish (Amphipirion melanopus), GnIH (an antagonist of GnRH) and the 

melatonin receptor were found to be co-localized65.  

Substantial evidence from studies66, 67, 68, 69 suggests that to activate the reproductive 

axis, melatonin levels must either rise or fall. In mammals, it has been found that melatonin 

secretion reaches its lowest levels at the time of puberty. If there is excessive melatonin 

secretion, then there is a delay in the onset of puberty67. It was also observed that by giving 
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melatonin, it reduces the expression of kisspeptin under conditions of prolonged photoperiod68, 

while endogenous melatonin suppression (after pinealectomy) abolishes the effects of reduced 

photoperiod on kisspeptin expression69. So, from these studies, it can be said that because of 

melatonin, the kisspeptin hormone remains suppressed before the pubertal period, and during 

puberty, the decrease of melatonin results in the release of kisspeptin which in turn activates 

the HPG axis.   

The research on melatonin is more emphasized with respect to reproduction. Not many 

studies have been done to check its functional role during the onset of puberty in fish. But from 

the existing reports, we can say that melatonin might have an indirect activity with both 

kisspeptin and GnRH. Thus, studies need to be carried out in this area so that the role of 

Melatonin and its crosstalk with kisspeptin become evident in the onset of puberty. 

For the control of reproduction in vertebrates, the endocrine and the nervous system 

work together (neuroendocrine). We have already discussed above the prime factors involved 

in it, i.e., the environmental factors, GnRH, kisspeptin and melatonin. In addition to them, the 

monoamine neurotransmitter serotonin (5-hydroxytryptamine) is also involved in reproductive 

functions.  

Serotonin 

Serotonin is the precursor of melatonin and is synthesized from L-tryptophan, an 

essential amino acid, with the assistance of two enzymes: tryptophan hydroxylase (TPH) and 

amino acid decarboxylase70. 

Anatomical distribution of serotonin and its receptors in the brain of teleost: 

Studies have shown three major serotonergic populations in the brain of teleost: (i) 

pretectal population, (ii) posterior tuberculum/hypothalamic populations, and (iii) raphe 

populations71, 72. Serotonin receptors have been identified in various fishes such as Zebrafish73, 

Tilapia, Rainbow trout (Oncorhynchus mykiss), etc. Three serotonin receptor subtypes (5-HT1, 

5-HT2, and 5-HT7) have been found in Zebrafish, including two subtypes (5-HT2A and 5-

HT2C) of 5-HT2 and three subtypes of 5-HT1 (5-HT1aa, 5-HT1ab, and 5-HT1bd)74, 75. 5-

HTr1aa, 5-HTr1ab, and 5-HTr1bd are predominantly expressed in the preoptic area and 

hypothalamus of the Zebrafish brain74, while 5-HT2C is expressed in the telencephalon, 

diencephalon, rhombencephalon, and spinal cord75. In addition to these, serotonin cells are also 
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found in the pineal gland72, suggesting a possible interaction between serotonin and melatonin 

during the pubertal onset. 

 

Functional role of serotonin 

According to an immunohistochemical investigation, Serotonin fibres closely associate 

with GnRH neurons in the hypothalamus and olfactory bulb of the Atlantic croaker 

(Micropogonias undulatus)76. In Zebrafish, serotonin receptors are expressed in a number of 

brain regions that contain GnRH neurons, which suggests that GnRH may co-express with 

serotonin receptors, as shown in mammals74, 77. Studies conducted on teleost in both in-vitro 

and in-vivo environments have demonstrated the role of 5-HT1 or 5-HT1 receptor subtypes in 

promoting gonadotropin secretion78, 79, 80. Serotonin and GnRH promote LH secretion in the 

Atlantic croaker80. In cultured brain preoptic-anterior hypothalamic area and pituitary 

fragments of Goldfish, serotonin promotes the release of GnRH81. In Prussian carp (Carassius 

gibelio), serotonin alone had no effect on the spontaneous release of LH, but when GnRH 

analogue was co-administered, serotonin's additive effects were seen82. These findings point to 

a functional link between the GnRH and serotonin systems in teleost. 

Conclusion 

From the existing studies, we can say that the three components - kisspeptin, melatonin 

and serotonin are closely associated with the reproductive endocrine signalling pathways and 

somehow control the onset of puberty. Till now individual studies of these components have 

been done with respect to the onset of puberty. Only a few studies are found linking kisspeptin 

and melatonin. However, no research has discussed how serotonin affects the kisspeptin system 

in vertebrates. Therefore, further analysis needs to be done to understand how these three 

interacting players affect each other, which will further help to elucidate the 

mechanism of puberty. Advanced techniques like transcriptomics will help in deciphering the 

expression profile of key molecules playing a role during the onset of puberty. Additionally, 

thorough research is needed in understanding the mechanism of the onset of puberty which can 

be extrapolated as an application to the aquaculture industry. 



Vol. 6, Issue 1, June 2023    Interwoven: An Interdisciplinary Journal of Navrachana University                 23 

 

 

 
Copyright © 2023, Navrachana University www.nuv.ac.in 

 

 

 

Figure 3: Summary diagram of the possible interaction between kisspeptin, melatonin, 

serotonin and other factors in fish during the onset of puberty. 

Environmental cues are interpreted by the kisspeptin neurons present in the hypothalamus and 

they activate the GnRH neurons, initiating the HPG axis. How melatonin, serotonin and other 

factors contribute to it is yet to be understood. Potentially, they may bind with the kisspeptin 

or GnRH neurons in the hypothalamus or may directly bind with the Gonadotrops at the 

pituitary level. 
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Glossary 

Endocrine Disruptors- They are chemical substances that can interfere with the normal 

functioning of the endocrine system, disrupting hormone production and regulation in humans 

and other organisms. 

Gametogenesis- process by which sperm and eggs are produced from the germ cells in the 

testes and ovaries, respectively. 

Steroidogenesis- the biological process by which specialized cells, typically located in the 

adrenal glands and gonads (ovaries and testes), synthesize and produce steroid hormones. 

These hormones include hormones like cortisol, aldosterone, testosterone, and estrogen, which 

play essential roles in various physiological processes such as metabolism, immune response, 

and reproductive functions. 

G protein-coupled receptor (GPCR)- are a large family of cell surface receptors that transmit 

signals from the extracellular environment to the inside of the cell. They are involved in a wide 

range of cellular processes and play a crucial role in mediating the effects of various hormones 

and neurotransmitters. 

Hypogonadotropic hypogonadism- is a medical condition characterized by abnormally low 

levels of sex hormones, such as testosterone in males and estrogen in females, due to a 

deficiency of gonadotropin-releasing hormone (GnRH) or the failure of the pituitary gland to 

produce sufficient amounts of gonadotropins (LH and FSH). This hormonal imbalance leads 

to impaired development and functioning of the gonads (testes in males and ovaries in females), 

resulting in delayed or absent puberty and reduced fertility. 

Circadian- refers to biological processes or behaviors that exhibit a rhythmic pattern with a 

cycle of approximately 24 hours. These processes are influenced by the internal biological 

clock in organisms, which helps regulate various physiological and behavioral changes, such 

as sleep-wake cycles, hormone production, body temperature, and metabolism, in alignment 

with the day-night cycle. 

Zeitgeber- A zeitgeber is an external cue or time cue that helps to synchronize an organism's 

internal biological rhythms, particularly the circadian rhythm, with the natural 24-hour day-

night cycle. Common zeitgebers include light, temperature, social cues, and feeding times, 



Vol. 6, Issue 1, June 2023    Interwoven: An Interdisciplinary Journal of Navrachana University                 35 

 

 

 
Copyright © 2023, Navrachana University www.nuv.ac.in 

 

 

which can influence an organism's internal clock and help it adjust its physiological and 

behavioral activities to the appropriate time of day. 


